Census State FIPs Dictionary

Summary

It can be hard to find easily usable datasets that link state names or abbreviations to state FIPS codes.

On this page, I’ve copied 4 Python dictionaries with this correspondence. You can also download them in .csv format (note due to WordPress issues they are technically saved as .txt files)

  1. State Name to State FIPS (csv)
  2. State FIPS to State Name (csv)
  3. State Abbreviation to State FIPS (csv)
  4. State FIPS to State Abbreviation (csv)

The source of the data is the Natural Resources Conservation Service

State Name to State FIPS:

state_name_fips_dict = {
 'Alabama': '01',
 'Alaska': '02',
 'Arizona': '04',
 'Arkansas': '05',
 'California': '06',
 'Colorado': '08',
 'Connecticut': '09',
 'Delaware': '10',
 'Florida': '12',
 'Georgia': '13',
 'Hawaii': '15',
 'Idaho': '16',
 'Illinois': '17',
 'Indiana': '18',
 'Iowa': '19',
 'Kansas': '20',
 'Kentucky': '21',
 'Louisiana': '22',
 'Maine': '23',
 'Maryland': '24',
 'Massachusetts': '25',
 'Michigan': '26',
 'Minnesota': '27',
 'Mississippi': '28',
 'Missouri': '29',
 'Montana': '30',
 'Nebraska': '31',
 'Nevada': '32',
 'New Hampshire': '33',
 'New Jersey': '34',
 'New Mexico': '35',
 'New York': '36',
 'North Carolina': '37',
 'North Dakota': '38',
 'Ohio': '39',
 'Oklahoma': '40',
 'Oregon': '41',
 'Pennsylvania': '42',
 'Rhode Island': '44',
 'South Carolina': '45',
 'South Dakota': '46',
 'Tennessee': '47',
 'Texas': '48',
 'Utah': '49',
 'Vermont': '50',
 'Virginia': '51',
 'Washington': '53',
 'West Virginia': '54',
 'Wisconsin': '55',
 'Wyoming': '56',
 'American Samoa': '60',
 'Guam': '66',
 'Northern Mariana Islands': '69',
 'Puerto Rico': '72',
 'Virgin Islands': '78'}

State FIPS to State Name:

fips_state_name_dict = {
 '01': 'Alabama',
 '02': 'Alaska',
 '04': 'Arizona',
 '05': 'Arkansas',
 '06': 'California',
 '08': 'Colorado',
 '09': 'Connecticut',
 '10': 'Delaware',
 '12': 'Florida',
 '13': 'Georgia',
 '15': 'Hawaii',
 '16': 'Idaho',
 '17': 'Illinois',
 '18': 'Indiana',
 '19': 'Iowa',
 '20': 'Kansas',
 '21': 'Kentucky',
 '22': 'Louisiana',
 '23': 'Maine',
 '24': 'Maryland',
 '25': 'Massachusetts',
 '26': 'Michigan',
 '27': 'Minnesota',
 '28': 'Mississippi',
 '29': 'Missouri',
 '30': 'Montana',
 '31': 'Nebraska',
 '32': 'Nevada',
 '33': 'New Hampshire',
 '34': 'New Jersey',
 '35': 'New Mexico',
 '36': 'New York',
 '37': 'North Carolina',
 '38': 'North Dakota',
 '39': 'Ohio',
 '40': 'Oklahoma',
 '41': 'Oregon',
 '42': 'Pennsylvania',
 '44': 'Rhode Island',
 '45': 'South Carolina',
 '46': 'South Dakota',
 '47': 'Tennessee',
 '48': 'Texas',
 '49': 'Utah',
 '50': 'Vermont',
 '51': 'Virginia',
 '53': 'Washington',
 '54': 'West Virginia',
 '55': 'Wisconsin',
 '56': 'Wyoming',
 '60': 'American Samoa',
 '66': 'Guam',
 '69': 'Northern Mariana Islands',
 '72': 'Puerto Rico',
 '78': 'Virgin Islands'}

State Abbreviation to State FIPS:

state_abbrev_fips_dict = {
 'AL': '01',
 'AK': '02',
 'AZ': '04',
 'AR': '05',
 'CA': '06',
 'CO': '08',
 'CT': '09',
 'DE': '10',
 'FL': '12',
 'GA': '13',
 'HI': '15',
 'ID': '16',
 'IL': '17',
 'IN': '18',
 'IA': '19',
 'KS': '20',
 'KY': '21',
 'LA': '22',
 'ME': '23',
 'MD': '24',
 'MA': '25',
 'MI': '26',
 'MN': '27',
 'MS': '28',
 'MO': '29',
 'MT': '30',
 'NE': '31',
 'NV': '32',
 'NH': '33',
 'NJ': '34',
 'NM': '35',
 'NY': '36',
 'NC': '37',
 'ND': '38',
 'OH': '39',
 'OK': '40',
 'OR': '41',
 'PA': '42',
 'RI': '44',
 'SC': '45',
 'SD': '46',
 'TN': '47',
 'TX': '48',
 'UT': '49',
 'VT': '50',
 'VA': '51',
 'WA': '53',
 'WV': '54',
 'WI': '55',
 'WY': '56',
 'AS': '60',
 'GU': '66',
 'MP': '69',
 'PR': '72',
 'VI': '78'}

State FIPS to State Abbreviation:

fips_state_abbrev_dict = {
 '01': 'AL',
 '02': 'AK',
 '04': 'AZ',
 '05': 'AR',
 '06': 'CA',
 '08': 'CO',
 '09': 'CT',
 '10': 'DE',
 '12': 'FL',
 '13': 'GA',
 '15': 'HI',
 '16': 'ID',
 '17': 'IL',
 '18': 'IN',
 '19': 'IA',
 '20': 'KS',
 '21': 'KY',
 '22': 'LA',
 '23': 'ME',
 '24': 'MD',
 '25': 'MA',
 '26': 'MI',
 '27': 'MN',
 '28': 'MS',
 '29': 'MO',
 '30': 'MT',
 '31': 'NE',
 '32': 'NV',
 '33': 'NH',
 '34': 'NJ',
 '35': 'NM',
 '36': 'NY',
 '37': 'NC',
 '38': 'ND',
 '39': 'OH',
 '40': 'OK',
 '41': 'OR',
 '42': 'PA',
 '44': 'RI',
 '45': 'SC',
 '46': 'SD',
 '47': 'TN',
 '48': 'TX',
 '49': 'UT',
 '50': 'VT',
 '51': 'VA',
 '53': 'WA',
 '54': 'WV',
 '55': 'WI',
 '56': 'WY',
 '60': 'AS',
 '66': 'GU',
 '69': 'MP',
 '72': 'PR',
 '78': 'VI'}

Leave a Reply

Discover more from Peter Horton

Subscribe now to keep reading and get access to the full archive.

Continue reading